Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 18(6)2021 03 10.
Article in English | MEDLINE | ID: covidwho-1125544

ABSTRACT

The 2020 COVID-19 pandemic has not only resulted in immense loss of human life, but it also rampaged across the global economy and socio-cultural structure. Worldwide, countries imposed stringent mass quarantine and lockdowns to curb the transmission of the pathogen. While the efficacy of such lockdown is debatable, several reports suggest that the reduced human activities provided an inadvertent benefit by briefly improving air and water quality. India observed a 68-days long, nation-wide, stringent lockdown between 24 March and 31 May 2020. Here, we delineate the impact of the lockdown on groundwater and river sourced drinking water sustainability in the arsenic polluted Ganges river basin of India, which is regarded as one of the largest and most polluted river basins in the world. Using groundwater arsenic measurements from drinking water wells and water quality data from river monitoring stations, we have studied ~700 km stretches of the middle and lower reaches of the As (arsenic)-polluted parts of the river for pre-lockdown (January-March 2020), syn-lockdown (April-May), and post-lockdown periods (June-July). We provide the extent of As pollution-free groundwater vis-à-vis river water and examine alleviation from lockdown as an opportunity for sustainable drinking water sources. The overall decrease of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations and increase of pH suggests a general improvement in Ganges water quality during the lockdown in contrast to pre-and-post lockdown periods, potentially caused by reduced effluent. We also demonstrate that land use (agricultural/industrial) and land cover (urban-periurban/rural) in the vicinity of the river reaches seems to have a strong influence on river pollutants. The observations provide a cautious optimistic scenario for potentially developing sustainable drinking water sources in the arsenic-affected Ganges river basin in the future by using these observations as the basis of proper scientifically prudent, spatially adaptive strategies, and technological interventions.


Subject(s)
Arsenic , COVID-19 , Drinking Water , Water Pollutants, Chemical , Communicable Disease Control , Environmental Monitoring , Humans , India , Pandemics , Rivers , SARS-CoV-2 , Water Pollutants, Chemical/analysis
2.
Journal of Earth System Science ; 129(1), 2020.
Article | Web of Science | ID: covidwho-778080

ABSTRACT

In 2020, we are in the doorstep of a new decade, during which the UN Sustainable Development Goals (SDG) are to be achieved, collectively as one nation and one human-hood, where availability of safe, sustainable and clean water and air forms the core of multiple goals. However, the emergence of the COVID-19 pandemic across the globe has resulted a newer challenge and paradigm for an evolving socio-scientific priorities. It is generally expected that the impacts of the pandemic would be in shorter time-scale, while the planned time and pathway for attaining the SDG are typically mandated in longer-term, hence may remain mostly unaffected. However, the stringent lockdown measures, isolated economies and financial burden to contain the pandemic emergency have resulted to slowdown of socio-economic development, which if continues for a longer period, would put a question mark on developing plans and pathways to achieve the SDGs, even in decadal-scale. Hence, in these newer times, it is important to understand the real priorities of availability of clean water and air, which are already stressed worldwide and in India, because of various natural and human-influenced triggers. This ongoing pandemic has provided an unprecedented opportunity to evaluate the impact of human development and consequent feedback of nature and human society in pre- and post-COVID scenarios on water-air-human life, which can help to re-think and re-orient the societal development priorities. It is a rare opportunity for scientists to impress the policy-makers with real-time examples on the efficacies of potential mitigation strategies for climate change, water and air pollution, and the importance of enduring investment on environmental causes and consequent benefits that can secure health and development for our future generations.

SELECTION OF CITATIONS
SEARCH DETAIL